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1. Motivation

Optimizing processes require increasing effort, as tolerances of
parts become tight. The advantage of assembling out of the box
justifies the effort in many cases. If parts need to be exchanged on a
single part basis, the effort is even more reasonable. Nevertheless,
for some processes and parts (like injectors, turbine blades or
connecting rods) the characteristics of manufacturing lead to
variances in critical measures. To overcome this restriction in
assembly, selected parts are matched individually.

Additionally, the effort to reach fully exchangeable products in
micro manufacturing, dealing with parts of less than 1 mm in at
least two dimensions, is high [1]. This is a result of both size effects
[2] and small tolerances [3], which have to be taken into account.
Micro parts in general will not be exchanged individually, but
instead as an assembly. As micro parts are usually exchanged as
assembly, after the use phase, the need for exchangeability can be
neglected. If there was a method to match parts efficiently, the
effort to keep the process within tight limits could be reduced.

2. Selective assembly

Various approaches for selective assembly and matching of
parts are well-known from micro, meso and macro level. Kumar
and Kannan [4] use genetic algorithms to obtain an optimal

algorithm. Kannan et al. [7] use genetic algorithms for selec
assembly and combine Taguchi’s loss function for the econo
aspect. Process and performance optimization using the Hunga
method for assembly of battery electrodes is introduced by Schm
et al. [8].

Other approaches use real-time process observation. Colled
et al. [9] introduce a modelling system for the design of selec
and adaptive assembly systems. Lanza et al. [10] describe
algorithm for real-time optimization while matching individ
components based on their specific measurements.

The utilization of well-known variances in production 

adapting tolerances has also been investigated in macro range.
large-volume products like aircrafts, Ballu et al. introduce
approach that allows a progressive modelling of featu
parameters and tolerances within the design stage [11]. An
et al. use Skin Model Shapes for reflecting shape deviations 

supporting tolerance management [12].
All of these approaches are dealing with parts, which can

handled and matched individually. For micro manufacturing, p
are combined in long sequences and are linked physically. 

linkage between linked micro parts assures the retention of p
in the right order. For this reason, only approaches that cons
linkages between data points are applicable. Conventional se
tive assembly approaches consider the data points independe
of their order. For this reason, these approaches cannot be use
methodology that does not alter the order of data points in a
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manufacturing tolerance for selective assembly. Asha et al. [5] use
genetic algorithms to address multiple characteristics. Raj et al. [6]
present an approach considering small and medium sized batches
for reducing surplus parts with a non-dominated sorting genetic
cts,
tion
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sequence is required.

3. Micro mass matching

Micro manufacturing uses linkages to overcome size effe
alter handling and sorting processes for enabling mass produc
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. The design of the linkage is divided into ladder type, line type,
comb type [14]. Long-term storing and provision of linkages is
done by winding [15]. Hence, linkages can be maintained till
mbly. The product quality is assured as long as all parts in the
age are fully exchangeable. Production processes are therefore

 in tight limits, while deviations interrupt the process. For
t micro assemblies, only a few measures have to be considered
ght tolerances. Especially those measures, where assemblies
onnected with each other are important. Within the assembly,
sures need to be kept within a certain tolerance in combina-

 with each other. The consideration of the tolerances for two
s moves the tolerating from part to assembly group.
nowing the characteristic degradation curve, trends for the
easing deviation from the nominal value can be identified [16]
sequences from the linked parts can be derived. Each sequence
nked parts stays in a certain, defined value range. Identified
ching sections can be provided for assembly, which individu-
would not be within the tolerances for exchangeable parts, but
ithin the tolerance for assembly.
s trends cannot be expected to run in parallel lines for different
es nor, to be steady throughout production, trends from
uction need to be evaluated and clustered. Thereby the trends
d be taken back to design stage in order to adjust the nominal
e and allow the maximum matchings from a certain
bination of parts and processes [13].
rom a technological point of view, matching specific clusters
in the linkages need specific conveyance technique as
osed in [17], where parts are sorted and prepared in pacing
uencies of up to 400 parts per minute.
he concept of tolerance field widening and synchronisation of
esses is depicted in Fig. 1, using the example of cups and
res, that are produced as ladder type (cups) and line type
eres). Spheres and cups are parts that could be manufactured
igh rates by micro cold forming. Between these steps, a
ering is required due to different process times. In order to
erstand deviations and trends in the processes, in the first

 every cup and sphere is measured. The critical measure is the
tion of the inner diameter of the cup dc and the diameter of
sphere ds. To widen the allowed production array, trends need
e derived. In the second step, the tolerance field widening,
e trends can be identified by clustering. Clusters will be
ched afterwards by considering the fit size for maximizing the
ut of assemblies. Beyond that, the knowledge of the existent
ds of the measured diameters d(t) could be utilized.
efore, the trends are adjusted by adding or subtracting an
tified value for further improvements. This step is repeated
tively and proven by another matching. The produced parts
stored on coils and in the third step; the parts are assembled
rding to the results of the tolerance field widening. The
ired fast and precise conveyance, as well as the output
rovements by widening of the tolerance field, interdepends.
chieve high throughput rates, there should be a low number
ts within the linked parts for minimizing interruptions while
uction [13]. According to the measured diameters of these
s and their deviation from the tolerance zones, e.g. due to
rring wear, preferably long sections are required. This assures
st mass production, while widening the tolerance field. The
tification of sections with similar trends facilitates long
ions for assembly.

4. Cluster algorithms

Cluster algorithms are used to identify groups of data points
that are homogeneous within the cluster and are heterogeneous to
data points of other clusters [18]. These algorithms are often tailor-
made for specific uses. Algorithms for identifying trend-specific
clusters must meet the following use case specific requirement of
considering linkages between micro parts.

According to graph theory, the parts could be considered as nodes
and the linkages as edges between these data points. For this reason,
cluster algorithms for networks must be applied. Schaefferdivides the
procedure of building clusters in networks into two approaches
[19]. The first one is using the edges (linkages of data points) for
identifying intensively connected communities of data points as
clusters. The second uses similarities of data points [19]. Within the
first approach, density-based key figures are used that are non-
applicable for identifying trend-specific clusters. These key figures like
the density on its self are based on the interconnectedness of data
points [20]. Looking at linked parts, the linkage between the data
points is equal; every part has one predecessor and one successor. For
this reason, only the second field of algorithms that bases on
similarities is applicable. Similarities according to connectivity of data
points for identification of highly connected subgraphs [21] are also
not applicable. The application of distances as similarity measure is
one further possibility [22]. Forconsidering trends, the changingof the
data points must be taken into account in both kinds of linked parts.
While looking at the example of cups and spheres, the diameter is
crucial for building functional assemblies. In Fig. 2 the order of parts is
depicted exemplarily for spheres. For identifying trends, the distance
between diameters of sphere i (dSi) and sphere i + 1, and therefore the
distance of diameters between sphere i + 1 and sphere i + 2 of the
linked parts is significant.

Similar distances between spheres and cups could be interpreted
as similar trends. The Euclidian Distance [22] is used as a similarity
key figure and ensures numerical stability. The Euclidian distance of
the diameters of part i and the diameterof the part i + 1 Dist(dPi,dPi+1)
is calculated as:

Dist dPi; dPiþ1ð Þ ¼ dPi � dPiþ1j j ð1Þ

Clustering algorithms can be divided in several approaches that
differ in their procedural method. Hierarchical cluster algorithms
are dividing or adding data to clusters corresponding depicting
hierarchical structures [19]. The methodology of building clusters
is more useful than dividing, since agglomerative hierarchical
algorithms are starting at considering every data point as a single
cluster and then building clusters until a stop criterion is reached
like e.g. the number of clusters. When forming clusters by divisive
hierarchical cluster algorithms, cluster fitness functions homoge-
neity of data or the density within clusters is considered. These
approaches do not facilitate the identification of trends.

While identifying trend-specific clusters, the number of clusters
and sizes of clusters should not be defined. The pre-setting of a

Fig. 2. Order and diameter of line linked parts as basis for clustering.
Tolerance ield widening Micro mass matching
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Fig. 1. Concept of mass matching of micro parts.
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defined number can impede the identification of trends. Looking at
the example of cups and spheres, there are two measured data sets
that must be clustered.

5. Linked Parts Clustering

Most of the existing agglomerative hierarchical cluster algo-
rithms for networks, like the well-known Clique Percolation
Method [23], the Concept of Brightness [24] or Hierarchical Link-
Clustering [25], consider density measures for building clusters.
The Linked Parts Clustering (LPC) is a non-iterative algorithm that
is based on the schematic approach that is depicted in Fig. 3. The
LPC clusters the data points according to their order so that the
original sequence of data points is preserved.

The Euclidian Distance is used for calculating the distance
before di�1 and after di+1 a data point i. the data point is added to
the actual cluster cj or a new cluster cj+1 is started. A data point can
only be added to a new started cluster or the previous one. Since in
manufacturing processes variances occur, there are thresholds
required for decreasing and avoiding the influences of variances
while building clusters. For this reason, the assigning clustering
factors F1 or F2 are used. The multiplication with F1 and F2 delivers
these thresholds and avoids a building of a high number of very
small clusters. In case of unequal upper of lower limits of the
variances F1 and F2 must be different, otherwise the tolerances are
the same.

6. Experimental set up

Benchmarking of cluster algorithms is often done comparing
two or more algorithms [21]. For this reason, the introduced
methodology for clustering of trends is evaluated using the
following experimental set up. The following data with changing
trends were defined to evaluate the LPC and selection of
parameters. Two sets of data, each with 2000 data points, bearing
changing linear trends were simulated considering the parameters
that are listed in Table 1. Data set 1 simulates a slowly increasing
diameter of cups starting at 891.84 mm, and data set 2 simulates a
faster decreasing diameter of the spheres that starts at 909.16 mm.

For investigating, how the identification of trends and the
determination of tolerances for thresholds is influenced by
occurring variances, randomized data is used. Randomization is
done by adding a uniform distributed numbers on the diameter.
The upper and lower limit of these data is listed in Table 2. The
simulated values are added or subtracted from the data of the

0.5 the factor was changed in steps of 0.05. Depending on 

number of clusters, it was decreased or increased until tr
changes were identified. For evaluating if the LPC algorit
identified the trends successfully, data sets are used, where 

trends and clusters are well known.

For both data sets, the three scenarios of variances were tes
with variable assigning clustering factor F. Starting at a facto
0.5 the factor was changed in steps of 0.05. Depending on 

number of clusters, it was decreased or increased until tr
changes were identified. For evaluating if the LPC algorit
identified the trends successfully, data sets are used, where 

trends and clusters are well known.

7. Experimental results

The results show that the LPC identifies trend-changes. In
scenarios, an increasing factor F leads to a decreasing numbe
clusters, since the annexation to another cluster is avoided.

For the data set with high changes of trends in the first scena
the algorithm identifies the number of clusters and the clu
boundaries are covering the simulated trend changes as depic
in Fig. 4.

Dist(di-1, di) = Distbefore Dist(di, di+1) = Distafter Cj Cj+1Distafter == Distbefore

Distbefore < Distafter Distbefore ≥ di+1 · (1-F) Distbefore < Distafter · (1-F)F:      Factord:      Diameterj

Fig. 3. Linked Parts Clustering Algorithm.

Table 1
Parameters for simulating varying trends.

Trend Rise/fall Up to

Low trends 01 �0.0011 750 part
02 �0.0012 1200 pa
03 �0.0015 1500 pa
04 �0.0016 1900 pa
05 �0.0017 2000 pa

High trends 06 +0.001 1000 pa
07 +0.002 1500 pa
08 +0.003 1700 pa
09 +0.004 1800 pa
10 +0.005 2000 pa

Table 2
Simulated variances.

Scenario 1 2 3

Upper limit [mm] +0.001 +0.005 +0.0
Lower limit [mm] �0.001 �0.005 �0.0
123
45

F

Fig. 4. Identified clusters of high trends in scenario 1.
simulated trend.
For the simulated data, the changes within the trends and the

variances are defined. Therefore, it is possible to evaluate if the LPC
identifies trend-specific sections and how the defined assigning
clustering factors F1 and F2 must be chosen in dependence to the
variances. Due to the upper and lower limits of the variances in
Table 2 there is no differentiation between factor F1 and F2
necessary. The introduced clustering algorithm for linked parts
was implemented using Python 3.4.4.

For both data sets, the three scenarios of variances were tested
with variable assigning clustering factor F. Starting at a factor of
3
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ithin the second scenario of variances all clusters of the data set
 high trends have been identified again as depicted in Fig. 5. The
ning clustering factor F does not change for these two scenarios

 if the variances are four times higher. Again, all identified
ter boundaries coincide with the simulated trend changes.

ithin the third scenario of high trends, there are only a few
ter boundaries correctly identified even if a higher number of
ters is recognized. The maximum number of right identified
d changes is depicted in Fig. 6 In accordance to the higher
ances the explanation is that the identified changes are boosted
omly by the variances.

he data set with the lower trend changes shows that in this
 the influence of the variances is so high that the trend changes
e not identified as depicted in Fig. 7. Even in higher number of
ters the boundaries do not match simulated trend changes.

ummary and outlook

icro mass matching offers opportunities for micro production
vert the idea of tight tolerances and process arrays, and allows
her utilization of tools and hence higher output. Basis for the
oach is the ability to automatically analyse critical measures
identify trends and clusters. The LPC algorithm presented here
s the ability to identify trends within production data and

ne trend specific clusters, as long as the statistical variance of
data is not exceeding trend effects.
he two parameter sets indicate that a sole consideration of the

since possible sections that are usable for two clusters are already
identified.
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